
MODULI OF CURVES

ALEX MASSARENTI

Abstract. We treat some general facts about moduli spaces, in particular moduli of curves of
genus g. We give some examples, and construct coarse moduli spaces for curves of genus zero
and elliptic curves. We introduce briefly the concept of algebraic stack. The main goal is the
proof of the smoothness of the Deligne-Mumford stack which parametrizes curves of genus g ≥ 2,
in the proof we use some results from deformation theory.
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Introduction

The search for an object Mg that parametrizes curves of genus g is a very classical problem
in Algebraic Geometry. Riemann was the first to calculate the number 3g − 3, which gives the
dimension of Mg. Most of the moduli space of curves are only coarse moduli spaces, and the
obstructions to representing the corresponding functors, i.e to find fine moduli spaces, come from
automorphisms of the objects we want to parametrize.
The fact that a moduli functor does not admit a fine moduli space means that it cannot be
represented in the category of schemes. A larger category is that of functors from schemes to sets,
by definition moduli functors are objects in it, but in this way we lose completely the geometric
intuition. Categories of Algebraic Stacks are other enlargements of the category of schemes that
have been used to study moduli problems.
The moduli space Mg is a coarse moduli space for smooth, complete, connected curve of genus
g over an algebraically closed field. This space can be constructed using different techniques,
as instance: the Teichmüller approach, the Hodge theory approach and the Geometric Invariant
Theory (G.I.T.) approach.
The book Geometric Invariant Theory by Mumfor contains the proof of existence of a coarse moduli
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space for curves of genus g. Deligne and Mumford proved the irreducibility of the compactification
of the moduli space, and introduced the language of stacks in the article The irreducibility of the
space of curves of given genus published in 1969.
In this work we give an introduction to moduli questions, we introduce some tools, like spectral
sequences and deformation theory. We discuss briefly moduli questions for curves of genus zero
and elliptic curves. Finally we define the moduli functor for curves of genus g ≥ 2, assuming that
this functor is represented by an algebraic stack Mg, and using deformation theory we will prove
that Mg is a smooth Deligne-Mumford stack.

1. Moduli Questions

To fix the ideas, we work over an algebraically closed field k. Consider a class of objects M
aver k, as instance the class of closed subschemes of Pn with fixed Hilbert Polynomial, the class of
curves of genus g over k, the class of vector bundles of given rank and Chern classes over a fixed
schemes, and so on. We wish to classify the objects inM.
The first step is to give a rule for saying when two objects ofM are the same (usually isomorphic)
and then to give the elements of M up to isomorphism. This determines M as a set. Now we
want to put a natural structure of variety or scheme on M. In other words we are looking for
a scheme M whose closed points are in one-to-one correspondence with the elements of M, and
whose scheme structure describes the variations of elements inM, more precisely how they behave
in families.

Definition 1.1. A family of elements ofM, over the parameter scheme S of finite type over k, is
a scheme X → S flat over S, whose fibers at closed points are elements ofM.

The first request on M , to be a Moduli Space for the classM, is that for any family X → S of
objects ofM there exists a morphism φ : S →M such that for any closed point s ∈ S, the image
f(s) ∈M corresponds to the isomorphism class of the fiber Xs = φ−1(s) inM.
Furthermore we want the assignment of the morphism φ to be functorial. To explain the last
sentence consider the functor F : Sch → Sets, that assigns to S the set F(S) of families X → S

of elements of M parametrized by S. If S
′ → S is a morphism, for any family X → S we can

consider the fiber product X ×S S
′ → S

′
, that is a family over S

′
. In this way the morphism

S
′ → S gives rise to a map of set F(S)→ F(S

′
), and F becomes a controvariant functor.

In this language to assign a morphism φ : S → M to any family X → S with the required
properties, means to give a functorial morphism α : F → Hom(−,M).
Finally we want to make M unique with the above properties. So we require that if N is any other
scheme, and β : F → Hom(−, N) is a functorial morphism, then there exists a unique morphism
e : M → N such that β = he ◦ α, where he : Hom(−,M) → Hom(−, N) is the induced map on
associated functors.

Definition 1.2. We define a coarse moduli space for the familyM to be a scheme M over k, with
a morphism of functors α : F → Hom(−,M) such that

• the induced map F(Spec(k)) → Hom(Spec(k),M) is bijective i.e. there is a one-to-one
correspondence with isomorphism classes of elements ofM and closed points of M ,
• α is universal in the sense explained above.

We define a tautological family for M to be a family X → M such that for each closed point
m ∈ M , the fiber Xm is the element of M corresponding to m by the bijection F(Spec(k)) →
Hom(Spec(k),M) above.

A jump phenomenon for M is a family X → S, where S is an integral scheme of dimension
at least one, such that all fibers Xs for s ∈ S are isomorphic except for one Xs0 that is different.
In this case the corresponding morphism S → M have to map s0 to a point and all other closed
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points of S to another point, but this is not possible for a morphism of schemes, so a coarse moduli
space forM fails to exist.

Example 1.3. Consider the family y2 = x3 + t2x+ t3 over the t-line. Then for any t 6= 0 we get
smooth elliptic curves all with the same j-invariant

j = 123 · 4t6

4t6 + 27t6
= 123 · 4

31
,

and hence all isomorphic. But for t = 0 we get the cusp y2 = x3. This is a jump phenomenon, so
the cuspid curve cannot belong to a class having a coarse moduli space.

Definition 1.4. Let F be the functor associated to the moduli problemM. If F is isomorphic to
a functor of the form Hom(−,M), the we say that F is representable, and we call M a fine moduli
space forM.

Let α : F → Hom(−,M) be an isomorphism. In particular F(M) → Hom(M,M) is an
isomorphism, and there is a unique family XU → M corresponding to the identity map IdM ∈
Hom(M,M). The family XU is called the universal family of the fine moduli space M . Note that
for any family X → S there exists an unique morphism S →M , such that X → S is obtained by
base extension from the universal family. Conversely, if there is a scheme M and a family XU with
the above properties then F is represented by M .

Remark 1.5. If M is a fine moduli space forM then it is also a coarse moduli space, furthermore
the universal family XU →M is a tautological family.

A benefits of having a fine moduli space is that we can study it using infinitesimal methods.

Proposition 1.6. Let M be a fine moduli space for the moduli problem M, and let X0 ∈ M be
an element corresponding to a point x0 ∈ M . The Zariski tangent space Tx0

M is in one-to-one
correspondence with the set of families X → D over the dual numbers D = k[ε]/(ε2), whose closed
fibers are isomorphic to X0.

Proof. We know that to give a morphism f : Spec(D) → M is equivalent to give a closed point
x0 ∈ M and a tangent direction v ∈ Tx0M . But a morphism f : Spec(D) → M corresponds to a
unique family X → Spec(D) whose closed fibers are isomorphic to X0 ∈ M corresponding to the
point x0 ∈M , where x0 = f((Spec(D))red). �

Let F : Sch → Sets be the functor associated to the moduli problem M. Suppose that F is
representable, and let M be the corresponding fine moduli space. For any local Artin k-algebra A
we have that Spec(A) is a fat point and (Spec(A))red is a single point. For any x0 ∈ M we can
define the infinitesimal deformation functor of F as the functor Art → Sets that sends A in the
set of morphism f : Spec(A)→M such that f((Spec(A))red) = x0. Clearly studying this functor
we get information on the geometry of M in a neighborhood of x0.
Recall that a pro-object is an inverse limit of objects in Art, the category of Artin local algebras
over a field k. If F : Art → Sets is a deformation functor we say that F is pro-representable if it
is isomorphic to Hom(−, R) for some pro-object R.

Proposition 1.7. Let F be the functor associated to the moduli problem M, and X0 ∈ M.
Consider the functor F0 that to each local Artin ring A over k assigns the set of families of M
over Spec(A) whose closed fiber is isomorphic to X0. If M has a fine moduli space, then the
functor F0 is pro-representable.

Proof. Let M be a fine moduli scheme forM, and let x0 ∈M corresponds to X0 ∈M. Let OM,x0

be the local ring of M at x0 and Mx0
its maximal ideal. The natural homomorphisms

...→ OM,x0
/M3

x0
→ OM,x0

/M2
x0
→ OM,x0

/Mx0
,
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make (OM,x0
/Mn

x0
) into an inverse system of rings. The inverse limit lim←−OM,x0

/Mn
x0

is denoted
by ÔM,x0

, and is called the completion of OM,x0
with respect to Mx0

or the Mx0
-adic completion

of OM,x0 .
SinceM is a fine moduli space, each element of F0(A) corresponds to a unique morphism Spec(A)→
M that maps (Spec(A)red) = Spec(k) at x0. Such morphism correspond to a ring homomorphism
ÔM,x0 → A. We conclude that the functor F0 is pro-representable and that it is represented by
the pro-object ÔM,x0

, Mx0
-adic completion of OM,x0

. �

Definition 1.8. A controvariant functor F : Sch→ Sets is a sheaf for the Zariski topology, if for
every scheme S and every {Ui} open covering of S, the diagram

F(S)→
∏
F(Ui) ⇒

∏
F(Ui ∩ Uj)

is exact. This means that:
• given x, y ∈ F(S) whose restriction to F(Ui) are equal for all i, then x = y,
• given a collection of elements xi ∈ F(Ui) for each i, such that for each i, j, the restrictions

of xi, xj to F(Ui ∩ Uj) are equal, then there exists an element x ∈ F(S) whose restriction
to each F(Ui) is xi.

Proposition 1.9. If the moduli problem M has a fine moduli space, then the associated functor
F is a sheaf in the Zariski topology.

Proof. SinceM has a fine moduli space, for any scheme S we have F(S) = Hom(S,M). Further-
more a morphisms of schemes are determined locally, and can be glued if they are given locally
and are compatible on overlaps. �

Remark 1.10. Using Grothendieck’s theory of descent one can show that a representable functor
is a sheaf for the faithfully flat quasi-compact topology, and hence also for the étale topology.

1.1. Examples of Moduli Spaces. We will give some examples of representable functors.

Example 1.11. (Grassmannians) Let V be a k-vector space of dimension n, and let r ≤ n be a
fixed integer. Consider the controvariant functor Gr : Sch→ Sets defined as follows

• For any scheme S, Gr(S) is the set of rank r vector subbundle of the trivial bundle S×V .
• If f : S → S

′
is a morphism of schemes, and ES′ is a rank r subbundle of S

′ × V , we
define

Gr(f)(ES′ ) = f∗(ES′ ) = (f × IdV )−1(ES′ ).

Note that for S = Spec(k) we have that Gr(Spec(k)) is the set of rank r subbundle of Spec(k)×V =
V i.e. the set of r-dimensional subspace of V , that is the Grassmannian Gr(r, V ).
If E ∈ Gr(S) is a rank r subbundle of S × V , we can construct a morphism fE : S → Gr(r, V )
defined by s 7→ Es, where Es is the fiber of E over s ∈ S. In this way we get a map

φ(S) : Gr(S)→ Hom(S,Gr(r, V )), E 7→ fE .

The collection {φ(S)} gives a functorial isomorphism between Gr and Hom(−, Gr(r, V )). Then the
functor Gr is representable and the Grassmannian Gr(r, V ) is the corresponding fine moduli space.
The universal family corresponding to the identity map IdGr(r,V ) ∈ Hom(Gr(r, V ), Gr(r, V )) is
clearly the universal bundle on Gr(r, V ) given by {(W, v) | v ∈W} ⊆ Gr(r, V )× V .

Example 1.12. (Hilbert Scheme) Let P ∈ Q[z] be a fixed polynomial. For any S scheme over k
consider PNS = PN ×k S, and the functor

HilbNP : Sch→ Sets,
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that maps S in the set of subschemes Y ⊆ PNS such that the projection π : Y → S is flat, and for
any s ∈ S the fiber π−1(s) is a subscheme of PN with Hilbert polynomial P . The functor HilbNP is
representable by a scheme HilbP (PN ) projective over k and called the Hilbert Scheme.

To any closed schemes Y ⊆ PN we can associate its structure sheaf OY , its ideal sheaf IY , and
the structure sequence

0 7→ IY → OPN → OY 7→ 0.

Then we can regard the Hilbert scheme as the space parametrizing all the quotients OPN → OY ,
with Hilbert polynomial P .

Example 1.13. (Grothendieck’s Quot Scheme) As a generalization of the discussion above con-
sider a fixed coherent sheaf E on PN . The scheme parametrizing all the quotients E → F 7→ 0 with
Hilbert polynomial P is called the Quot Scheme. Grothendieck showed that the local deformation
functor of the Quot functor is pro-representable and that the Quot functor is representable by a
projective scheme.

Example 1.14. (Picard Scheme) Let X be a scheme of finite type over an algebraically closed
field k and let x ∈ X be a fixed point. Consider the functor

PicX,x : Sch→ Sets,

that associates to S the group of all invertible shaves L on X × S, with a fixed isomorphism
L|x × S ∼= OS.
If X is integral and projective, then this functor is representable by a separated scheme, locally of
finite type over k, called the Picard Scheme of X.

Example 1.15. (Hilbert-Flag Scheme) Consider a functor that associates to each scheme S a flag
Y1 ⊆ Y2 ⊆ ... ⊆ Yk ⊆ PNS of closed subscheme, all flat over S and where the fibers if Yj have a fixed
Hilbert Polynomial Pj for any j = 1, ..., k. This functor is representable by a scheme, projective
over k, called the Hilbert-Flag Scheme.

2. Curves of Genus Zero

There is only one smooth curve of genus g = 0 over an algebraically closed field k, namely P1
k.

A family of curve of genus zero over a scheme S is a scheme X, smooth and projective over S,
whose fibers are curves of genus zero.

Proposition 2.1. The space M = Spec(k) is a coarse moduli scheme for curves of genus zero.
Furthermore it has a tautological family.

Proof. The set Hom(Spec(k), Spec(k)) consists of a single element and clearly is in one-to-one
correspondence with the set of families over Spec(k) that consists of the family P1

k → Spec(k).
Clearly P1

k → Spec(k) is a tautological family. If X → S is a family there is a unique morphism
S →M = Spec(k), in this way we get the functorial morphism α : F → Hom(−,M).
Now suppose that β : F → Hom(−, N) is another morphism of functors. In particular the family
P1
k → M determines a morphism e ∈ Hom(M,N). Let X → S a family over a scheme S of finite

type over k. For any closed point s ∈ S the fiber is Xs
∼= P1, then any closed point s goes to the

point n = e(M) ∈ N . Now the restriction of the family on S to an Artin closed subscheme of S is
trivial, so factor through Spec(k). We conclude that the morphism β factors through α. �

Clearly the tautological family is P1 → Spec(k), that is the unique family over M = Spec(k).
Suppose M = Spec(k) to be a fine moduli space for the curves of genus zero. Then the universal
family is P1 → Spec(k). Since any other family is obtained by base extension from the universal
family it must be trivial i.e. of the form P1 ×k S → S. But the ruled surfaces provide an example
of non trivial families of curves of genus zero.
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Consider as instance the blow up BlpP2 of P2 is a point p. The projection π : BlpP2 → P1 makes
BlpP2 into a ruled surface, but it is not a product. Note that Pic(BlpP2) = Pic(P1×P1) ∼= Z⊕Z,
but on BlpP2 we have a (−1)-curve, the exceptional divisor. Suppose that there is a (−1)-curve
C = (a, b) on P1 × P1. We have C2 = (aL+ bR)(aL+ bR) = 2ab = −1, a contradiction.

Definition 2.2. A pointed curve of genus zero over k is a curve of genus zero with a choice of a
k-rational point. A family of pointed curves of genus zero is a flat family X π→ S, whose geometric
fibers are curves of genus zero, with a section σ : S → X.

The fact that σ : S → X is a section means that π ◦ σ = IdS . Then for any point s ∈ S the
image σ(s) is a point of the fiber Xs

∼= P1 over s. The section σ is sometimes called an S-point of
X.
A way to obtain a fine moduli space for the curves of genus zero is to rigidify the curves by taking
three distinct points. We know that there is a unique automorphism of P1 that fixed three distinct
points, namely the identity. Consider the families of curves of genus zero with three marked
points i.e. the families of X → S, whose fibers are curves of genus zero, with three sections
σ1, σ2, σ3 : S → X, such that on each fiber the sections have distinct support. Since a curve X of
genus zero with three marked points is rigid i.e. Aut(X) = {IdX}, the corresponding functor is
representable byM = Spec(k) and the universal family is P1 → Spec(k) with three distinct points,
say [0 : 1], [1 : 0], [1 : 1].

3. Grothendieck Spectral Sequence

We begin recalling the notion of five terms exact sequence or exact sequence of low degree terms
associated to a spectral sequence. Let

Eh,k2 =⇒ Hn(A)

be a spectral sequence whose terms are non trivial only for h, k ≥ 0. Then these is an exact
sequence

0 7→ E1,0
2 → H1(A)→ E0,1

2 → E2,0
2 → H2(A).

The Grothendieck spectral sequence is an algebraic tool to express the derived functors of a com-
position of functors G ◦ F in terms of the derived functors of F and G.
Let F : C1 → C2 and G : C2 → C3 be two additive covariant functors between abelian categories.
Suppose that G is left exact and that F takes injective objects of C1 in G-acyclic objects of C2.
Then there exists a spectral sequence for any objects A of C1

Eh,k2 = (RhG ◦RkF)(A) =⇒ Rh+k(G ◦ F)(A).

The corresponding exact sequence of low degrees is the following

0 7→ R1G(F(A))→ R1(GF(A))→ G(R1F(A))→ R2G(F(A))→ R2(GF)(A).

As a special case of the Grothendieck spectral sequence we get the Leray spectral sequence. Let
f : X → Y be a continuous map between topological spaces. We take C1 = Ab(X) and C2 = Ab(Y )
be the categories of shaves of abelian groups over X and Y respectively. The we take F to be
the direct image functor f∗ : Ab(X) → Ab(Y ) and G = ΓY : Ab(Y ) → Ab be the global section
functor, where Ab is the category of abelian groups. Note that

ΓY ◦ f∗ = ΓX : Ab(X)→ Ab

is the global section functor on X. By Grothendieck spectral sequence we know that (RhΓY ◦
Rkf∗)(E) =⇒ Rh+k(ΓY ◦ f∗)(E) = Rh+kΓX(E) for any E ∈ Ab(X), that is

Hh(Y,Rkf∗E) =⇒ Hh+k(X, E).
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The exact sequence of low degrees looks like

0 7→ H1(Y, f∗E)→ H1(X, E)→ H0(Y,R1f∗E)→ H2(Y, f∗E)→ H2(X, E).

Finally we work out the spectral sequence of Ext functors. Let E ∈ Coh(X) be a coherent sheaf on
a scheme X. Consider the functor

Hom(E ,−) : Coh(X)→ Coh(X), Q 7→ Hom(E ,Q),

and the global section functor

ΓX : Coh(X)→ Ab, Q 7→ ΓX(Q).

Note that ΓX ◦ Hom(E ,−) = Hom(E ,−). By Grothendieck spectral sequence we have (RhΓX ◦
RkHom(E ,−))(Q) =⇒ Rh+k(Hom(E ,−)(Q) for any Q ∈ Coh(X), that is

Hh(X, Extk(E ,Q)) =⇒ Exth+k(E ,Q).

The corresponding sequence of low degrees is

0 7→ H1(X,Hom(E ,Q))→ Ext1(E ,Q)→ H0(X, Ext1(E ,Q))→ H2(X,Hom(E ,Q))→ Ext2(E ,Q).

4. Deformations of Schemes

Let X be a smooth scheme of finite type over k. We define the deformation functor DefX :

Art → Sets of X sending an Artin ring A to the set of couples (XA
πA→ Spec(A), φ) modulo

isomorphism, where πA is a smooth morphism, φ : X → X0 is an isomorphism, X0 is defined by
the cartesian diagram

X0
//

��

XA

��
Spec(k) // Spec(A)

and (XA, φ), (X
′

A, φ
′
) are isomorphic if there is an isomorphism α : XA → X

′

A such that the
diagram

XA
α //

πA
##GGGGGGGGG X

′

A

π
′
A{{wwwwwwwww

Spec(A)

commutes and φ
′

= α ◦ φ.

Theorem 4.1. For any semi-small exact sequence 0 7→ I → A → B 7→ 0 in Art, let T iDefX =
Hi(X,TX), then

(1) there exists a functorial exact sequence

T 1DefX ⊗ I → DefX(A)→ DefX(B)→ T 2DefX ⊗ I;

(2) for any (XA, πA, φ) ∈ DefX(A), let G = Stab(XA) ⊆ T 1DefX ⊗ I, we have a functorial
exact sequence

0 7→ T 0DefX ⊗ I → Aut(XA)→ Aut(XB)→ G 7→ 0.

Now let X be any scheme over k. Consider the exact sequence of low degree for Ext functors
with shaves ΩX and OX . We have

0 7→ H1(X,Hom(ΩX ,OX))→ Ext1(ΩX ,OX)→ H0(X, Ext1(ΩX ,OX))→ H2(X,Hom(ΩX ,OX)).
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Identifying the set of deformations of X over the dual numbers D = k[ε]
ε2 is in one-to-one corre-

spondence with the group Ext1(ΩX ,OX). Then we get the sequence

0 7→ H1(X,Hom(ΩX ,OX))→ DefX(D)→ H0(X, Ext1(ΩX ,OX))→ H2(X,Hom(ΩX ,OX)).

5. Differentials and Ext groups

Let X be a smooth scheme and let Y be a closed subscheme with ideal sheaf I. We have an
exact sequence of shaves

I/I2 → ΩX ⊗OY → ΩY 7→ 0,

where the first map is the differential. Furthermore Y is smooth if and only if
• ΩY is locally free,
• the sequence is exact on the left also

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0.

In this case the sheaf I is locally generated by Codim(Y,X) elements, and its is locally free of
rank Codim(Y,X) on Y .

Remark 5.1. Let Y ⊆ X be an hypersurface not necessarily smooth. We can associate to Y a
Cartier divisor {(Ui, fi)}, and the ideal sheaf I is locally generated by fi on Ui. Furthermore
OX(Y ) is the sheaf locally generated by f−1

i on Ui. We conclude that OX(−Y ) ∼= I is locally free.
If Y ⊆ X is a reduced hypersurface, then I is locally free of rank one. We have the differential
d : I/I2 → ΩX ⊗OY , if f is a local generator of I then df is a local generator of Im(d), since Y
is reduced then df 6= 0, Im(d) is locally free of rank one, and the map d is injective. So we have
again an exact sequence

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0.

Let f = f(x1, ..., xn), with n = dim(X), be a local equation for Y in X. Then df = ∂f
∂x1

dx1 +

... + ∂f
∂xn

. Since Y is reduced the differential is injective, furthermore I/I2 is locally free of rank
one and ΩX ⊗OY is locally free of rank n. Applying Hom(−,OY ) to the sequence

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0,

we obtain

0 7→ Hom(ΩY ,OY )→ Hom(ΩX|Y ,OY )→ Hom(I/I2,OY )→ Ext1(ΩY ,OY )→ Ext1(ΩX|Y ,OY ).

Remark 5.2. Let X be a noetherian scheme such that any coherent shaves on X is quotient of
a locally free shaves i.e. Coh(X) has enough locally free objects. We define the homological
dimension of F ∈ Coh(X), denoted by hd(F), to be the least length of a locally free resolution
of F or ∞ if there is no finite one. Clearly F is locally free if and only if hd(F) = 1 if and only
if Ext1(F ,G) = 0 far any G ∈ Mod(X). Furthermore hd(F) ≤ n if and only if Exti(F ,G) = 0
for any i > n and G ∈ Mod(X). Finally hd(F) = Supx∈X(pdOxFx), where pd is the projective
dimension.

In our case ΩX|Y is locally free, and by the preceding remark Ext1(ΩX|Y ,OY ) = 0. Then we
get the exacts sequence

0 7→ Hom(ΩY ,OY )→ Hom(ΩX|Y ,OY )→ Hom(I/I2,OY )→ Ext1(ΩY ,OY ) 7→ 0.

Consider now the special case X = An and Y = Spec(A), where A = k[x1, ..., xn]/(f). The map
Hom(ΩAn|Y ,OY ) → Hom(I/I2,OY ) is the transpose of the differential d : I/I2 → ΩAn|Y . Fur-
thermoreHom(ΩAn|Y ,OY ) ∼= An andHom(I/I2) ∼= A. We can write the mapHom(ΩAn|Y ,OY )→
Hom(I/I2,OY ) as

φ : An → A, (α1, ..., αn) 7→ α1
∂f

∂x1
+ ...+ αn

∂f

∂xn
.
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We rewrite our exact sequence as

0 7→ Hom(ΩY ,OY )→ An → A→ Ext1(ΩY ,OY ) 7→ 0.

Then Im(φ) = ( ∂f∂x1
, ..., ∂f∂xn

) ⊆ A, and Ext1(ΩY ,OY ) ∼= A/( ∂f∂x1
, ..., ∂f∂xn

).
Now let Y = C ⊆ A2 be a nodal curve. In a étale neighborhood of the node we can assume
C = Spec(A), where A = k[x, y]/(xy). From the preceding discussion we get Ext1(ΩC ,OC) ∼=
A/(x, y) ∼= k. So Ext1(ΩC ,OC)p = 0 if p is a smooth point of C and Ext1(ΩC ,OC)p = k if
p ∈ Sing(C). Furthermore

Ext1(ΩC ,OX) ∼=
∑

p∈Sing(C)

Op.

6. Curves of Genus One

An elliptic curve over an algebraically closed field is a smooth projective curve of genus one.
LetX be an elliptic curve and let P ∈ X be a point, consider the linear system |2P | onX. Since the
curve is not rational |2P | has no base points, and since deg(K−2P ) = 2g−2−2 = −2 < 0 the divisor
|2P | is nonspecial i.e. h0(K− 2P ) = 0. By Riemann-Roch theorem h0(2P ) = deg(2P )− g+ 1 = 2.
Then the linear system |2P | defines a morphism f : X → P1 of degree 2 on P1. Now by Riemann-
Hurwitz theorem we have

2g − 2 = deg(f)(2gP1 − 2) + deg(Rf ),

then deg(Rf ) = 2 · deg(f) = 4, and f is ramified in four points and clearly P is one of them. If
x1, x2, x3,∞ are the four branch points in P1, then there is a unique automorphism of P1 sending
x1 to 0, x1 to 1, and leaving ∞ fixed, namely y = x−x1

x2−x1
. After this change of coordinates we can

assume that f is branched over 0, 1, λ,∞ ∈ P1, whit λ ∈ k, λ 6= 0, 1.
We define the j-invariant of the elliptic curve X by

j = j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

It is well known that over an algebraically closed field k with char(k) 6= 2 the scalar j(X) depends
only on X. Furthermore two elliptic curves X,X

′
are isomorphic if and only if j(X) = j(X

′
), and

every element of k is the j-invariant of some elliptic curve. Then there is a one-to-one correspon-
dence with the set of elliptic curves up to isomorphism and A1

k given by X 7→ j(X).

Definition 6.1. A family of elliptic curves over a scheme S is a flat morphism of schemes X → S
whose fibers are smooth curves of genus one, with a section σ : S → X. In particular, an elliptic
curve is a smooth curve C of genus one with a rational point P ∈ C.

Consider the functor F : Sch→ Sets where F(S) is the set of families of elliptic curves over S
modulo isomorphism. One can prove that F does not have a fine moduli space, but the affine line
A1
k is a coarse moduli space for F .

Now a natural question is how to compactify this coarse moduli space to obtain a complete moduli
space. In addition to elliptic curves we admit also irreducible nodal curve of arithmetic genus
pa = 1 with a fixed nonsingular point. We consider families X → S whose fibers are elliptic curves
or pointed nodal curve, then taking j(C) =∞ for the nodal curve the projective line P1 becomes
a coarse moduli moduli space.
Let C be a reduced irreducible curve with pa = 1 and such that Sing(C) is a node. A such curve
can be embedded in P2 has the nodal cubic C = Z(y2z−x3 +x2z). Consider the low degrees exact
sequence for Ext functors,

0 7→ H1(X,Hom(ΩC ,OC))→ Ext1(ΩC ,OC)→ H0(X, Ext1(ΩC ,OC))→ H2(X,Hom(ΩC ,OC)).
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Since Ext1(ΩC ,OC) is concentrated at the singular point of C we know that H0(X, Ext1(ΩC ,OC))
is a 1-dimensional k-vector space. Now we consider the sheaf Hom(ΩC , C) = TC .
Recall that if X is a smooth variety and Y ⊆ X is a closed irreducible subscheme defined by the
sheaf of ideals I, then there is an exact sequence

I/I2 → ΩX ⊗OY → ΩY 7→ 0.

Furthermore Y is smooth if and only if
• the sheaf ΩY is locally free, and
• the sequence above is exact on the left also:

0 7→ I/I2 → ΩX ⊗OY → ΩY 7→ 0.

Consider the sequence for a general subscheme Y and apply the functor Hom(−,OY ). We obtain

0 7→ TY → TX|Y → NY/X → Ext1(ΩY ,OY ) 7→ 0.

For our nodal curve C in P2 we have

0 7→ TC → TP2|C → NC/P2 → Ext1(ΩC ,OC) 7→ 0.

We know thatNC/P2 = OC(C) = OC(3), letD be the divisor associated toOC(3). Since C is a local
complete intersection the dualizing sheaf ω◦ is an invertible sheaf. We define the canonical divisor
as the divisor corresponding to ω◦ with support in Creg. Since there are no regular differentials on
C we have deg(K −D) < 0. By Riemann-Roch theorem for singular curves we get

h0(NC/P2) = deg(D) + 1− pa = 9 + 1− 1 = 9.

Consider now the Euler sequence

0 7→ OP2 → OP2(1)⊕3 → TP2 7→ 0.

Tensorizing by OC we get
0 7→ OC → OC(1)⊕3 → TP2|C 7→ 0.

Using the dualizing sheaf ω◦C ∼= OC , and Serre duality we get h1(OC(1)) = h0(OC(−1)) = 0. The
cohomology sequence looks like

0 7→ H0(C,OC)→ H0(C,OC(1)⊕3)→ H0(C, TP2|C)→ H1(C,OC) 7→ 0,

so h0(TP2|C) = 9. Furthermore the map H0(C,NC/P2) → H0(C, Ext1(ΩC ,OC)) is surjective
since the former parametrizes the embedded deformations of C as a subscheme of P2 and the
latter parametrizes the abstract deformations of the node. We conclude that h0(TC) > 0. Let
σ ∈ H0(C, TC) be a nonzero section, we have an exact sequence 0 7→ OC

σ→ TC → R 7→ 0. The
cokernel R is not zero, because TC is not locally free. Then T˘

C is a proper subsheaf of OC , using
the dualizing sheaf ω◦C ∼= OC and Serre duality we get h1(TC) = h0(T˘

C) = 0. We conclude that
Def(C) is one-dimensional.

7. The Moduli Stack Mg

The search for a Moduli SpaceMg for the curves of genus g ≥ 2 is a classical problem in algebraic
geometry. Riemann computed its dimension dim(Mg) = 3g − 3.
By Riemann-Hurwitz formula to any collection of 2d+ 2g− 2 points on P1 corresponds a curve X
with a finite morphism φ : X → P1 of degree d. To give such a morphism is equivalent to choose
a divisor D of degree d on X (i.e. d distinct points on X) and a element in H0(X,OX(D)). If we
consider divisors of degree d > 2g− 2, by Riemann-Roch we get h0(D) = d− g+ 1. Then we have
to subtract dim(Aut(X)) but a curve of genus g ≥ 2 as only a finite number of automorphism. We
conclude that

dim(Mg) = 2d+ 2g − 2− (d+ d− g + 1) = 3g − 3.
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Deligne and Mumford introduced a compactification of the moduli space allowing singular stable
curves, and in this context they hinted a new object, the moduli stack.
We consider projective smooth curves of genus g ≥ 2 over an algebraically closed field k, a such
curve have only a finite number of automorphisms. Consider the functor F : Sch→ Sets such that
F(S) is the sets of flat families X → S whose fibers are curves of genus g, up to isomorphism. We

say that two families X π→ S, X
′ π

′

→ S
′
are isomorphic if there exists an isomorphism of schemes

f : X → X
′
such that the following diagram commutes

X
f //

π
��?

??
??

??
? X

′

π
′

~~~~
~~

~~
~~

S

One of the main theorem of the theory is the following.

Theorem 7.1. The functor F of curves of genus g ≥ 2 over an algebraically closed field k has a
coarse moduli space Mg, which is a normal quasi-projective variety of dimension 3g − 3.

For a proof see Mumford’s book Geometric Invariant Theory, Deligne and Mumford article The
irreducibility of the space of curves of given genus, and Fulton article On the irreducibility of the
moduli space of curves.

7.1. Automorphisms of Curves. The only curve of genus one is P1, ant its automorphisms
group is PGL(2) which is an open subset of P3. If we choose one or two marked points in P1

the automorphisms group remains infinite of dimension two and one respectively. However a well
known theorem in projective geometry asserts that if we fix three marked points the automorphisms
group has only one element.
We will see that an elliptic curve has infinitely many automorphisms, but if we choose a marked
point on the elliptic curve the its automorphisms group is finite. Finally we will prove that any
curve X of genus g ≥ 2 has finitely many automorphisms, and we will give a bound on the
cardinality on Aut(X).
Recall that an elliptic curve X has a group structure, more precisely if we fix a point on X then we
get a bijective correspondence between the points of X and the divisors of degree zero in Cl0(X),
so any translation X ×X → X gives an automorphism of X. Clearly if we choose a marked point
p ∈ X, then the only possible translation is the identity, in this way the automorphism group
becomes finite. For more details see J.H. Silverman - The Arithmetic of Elliptic Curves.

Proposition 7.2. Let E be an elliptic curve over k with a marked point. The automorphisms
group Aut(E) is a finite group of order dividing 24. More precisely

• if j(E) 6= 0, 1728, then |Aut(E)| = 2,
• if j(E) = 1728 and chat(k) 6= 2, 3, then |Aut(E)| = 4,
• if j(E) = 0 and chat(k) 6= 2, 3, then |Aut(E)| = 6,
• if j(E) = 0, 1728 and chat(k) = 3, then |Aut(E)| = 12,
• if j(E) = 0, 1728 and chat(k) = 2, then |Aut(E)| = 24.

Proof. We consider the case char(k) 6= 2, 3. Then E can be realized as a plane smooth cubic and
can be written in Weierstrass form

y2 = x3 + αx+ β,

furthermore every automorphism of E is of the form

x = u2x
′
, y = u3y

′
,
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for some u ∈ k∗. Such a substitution will give an automorphism if and only if

u−4α = α, u−6β = β.

If α · β = 0 then j(E) 6= 0, 1728, the only possibilities are u = ±1. If β = 0 then j(E) = 1728, and
u satisfies u4 = 1, so Aut(E) is cyclic of order 4. If α = 0 then j(E) = 0, and u satisfies u6 = 1,
so Aut(E) is cyclic of order 6. �

Proposition 7.3. Any smooth curve X of genus g ≥ 2 has finitely many automorphisms.

Before proving the proposition we recall some general facts about canonically embedded vari-
eties.

Remark 7.4. (Canonically Embedded Varieties) Let f : X → Y be a dominant morphism between
smooth varieties. The pullback f∗ : f∗ΩY → ΩX defines a canonical morphisms between the
cotangent sheaves, and since pullback commutes with maximal exterior powers we get a canonical
morphism f∗ : f∗ωY → ωX of the canonical sheaves. In particular if X = Y and f ∈ Aut(X),
since f∗ωX ∼= ωX , we get an automorphism f∗ of ωX . Then an automorphism of X induces an
automorphism of ωX , and an automorphism on the vector space of the its global sectionH0(X,ωX).
Suppose now that ωX is ample, then ω⊗nX is very ample for some n ≥ 0. Any automorphism of
X induces also an automorphism of ω⊗nX . Let φ : X → P(H0(X,ω⊗nX )∗) be the corresponding
embedding. Then we have an action of Aut(X) on P(H0(X,ω⊗nX )∗), and any f ∈ Aut(X) induces
an automorphism of P(H0(X,ω⊗nX )∗) = PN . We have seen that if X has ample canonical sheaf
then Aut(X) is a closed algebraic subgroup of PGL(N + 1). Clearly the same argument works if
X has anticanonical ample sheaf.

Proof. Recall that if f : X → Y is a morphism of schemes, with X separated and Y smooth, and
Deff is the deformation functor of f , then T 1Deff = H0(X, f∗TY ). In particular for f = IdX :
X → X we get T 1

IdX
DefIdX = TIdXAut(X) = H0(X,TX), and h0(X,TX) = 0 since X is a curve of

genus g ≥ 2. The curve X has canonical ample sheaf, and by the preceding remark we can embed
Aut(X) in PGL(N + 1) ⊆ P(N+1)2−1 as closed subscheme. Since the tangent space of Aut(X) has
dimension zero we conclude that Aut(X) is a finite set of points. �

In the following proposition we give a bound on the number of automorphisms of a curve of
genus g ≥ 2.

Proposition 7.5. Let X be a projective curve of genus g ≥ 2, then the group Aut(X) is finite and
|Aut(X)| ≤ 84(g − 1).

Proof. LetW (X) be the set of Weierstrass points ofX, we know thatW (X) is finite. If φ ∈ Aut(X)
is a non trivial automorphism then φ as at most 2g + 2 fixed points. Since the set of Weierstrass
points is fixed by the group Aut(X) we have a morphism

F : Aut(X)→ Perm(W (X)),

where Perm(W (X)) is the group of permutations of W (X). If X is non hyperelliptic there are
more that 2g+ 2 Weierstrass points on X and there a unique automorphism that leaves more that
2g + 2 points fixed, the identity. So Ker(F ) = {IdX}.
If X is hyperelliptic then any automorphism in the subgroup (J) generated by the involution
J : X → X fixes the Weierstrass points, but since J2 = IdX this subgroup is finite. We conclude
that F is a morphism of Aut(X) into a finite group and with finite kernel, then the group Aut(X)
is finite.
Let G = Aut(X) and |G| = n, consider the projection π : X → X/G. For any x ∈ X/G we
have π−1(x) = {x ∈ X | π(x) = x} = {x ∈ X | ∃ g ∈ G, g(x) = x} = {g−1(x), g ∈ G}, then π
is a morphism of degree n. The map π is branched only at fixed point of G. Let P1, ..., Ps be a
maximal sets of ramification points of X lying over distinct points of X/G, and let ri be the index
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of ramification of Pi. Recall that if P ∈ X is a ramification point, and r is its ramification index,
then the fiber π−1(π(P )) consists of exactly n

r points, each having ramification index r, essentially
because X is a covering space for X/G. So in the fiber of any Pj there are n

rj
points each with

ramification index rj . Then the degree of the ramification divisor is

deg(Rπ) =

s∑
j=1

(rj − 1)
n

rj
= n

s∑
j=1

(1− 1

rj
).

By Riemann-Hurwitz formula we get 2g − 2 = n(2α − 2) + n
∑s
j=1(1− 1

rj
), where α is the genus

of X/G. Then
2g − 2

n
= 2α− 2 +

s∑
j=1

(1− 1

rj
).

Note that since rj ≥ 2 we have 1
2 ≤ 1− 1

rj
< 1. Since we may assume n > 1 it is clear that g > α.

Now we have to analyze the expression 2α− 2 +
∑s
j=1(1− 1

rj
).

(1) If α ≥ 2 we obtain 2α− 2 +
∑s
j=1(1− 1

rj
) ≥ 2−

∑s
j=1(1− 1

rj
) ≥ 2, so 2g−2

n ≥ 2 and

n ≤ g − 1.

(2) if α = 1 then 2α− 2 +
∑s
j=1(1− 1

rj
) =

∑s
j=1(1− 1

rj
) ≥ 1

2 , so
2g−2
n ≥ 1

2 and

n ≤ 4(g − 1).

(3) if α = 0 then 2α− 2 +
∑s
j=1(1− 1

rj
) =

∑s
j=1(1− 1

rj
)− 2. Since

∑s
j=1(1− 1

rj
)− 2 > 0 and

1− 1
rj
< 1, we conclude that s ≥ 3.

• If s ≥ 5, then
∑s
j=1(1− 1

rj
)− 2 ≥ 1

2 , so
2g−2
n ≥ 1

2 and

n ≤ 4(g − 1).

• If r = 4 then the rj cannot be all equal to 2, otherwise we will have 2g−2
n = 0, so

g = 1. Then at least one is ≥ 3 and gives
∑s
j=1(1− 1

rj
)−2 ≥ 3(1− 1

2 )+(1− 1
3 )−2 = 1

6 ,
so 2g−2

n ≥ 1
6 and

n ≤ 12(g − 1).

• In the case s = 3 we can assume without loss of generality 2 ≤ r1 ≤ r2 ≤ r3. We have
r3 > 3 otherwise

∑s
j=1(1− 1

rj
)− 2 < 0. Then r2 ≥ 3.

If r3 ≥ 7 then n ≤ 84(g − 1).
If r3 = 6 and r1 = 2 then r2 ≥ 4 and n ≤ 24(g − 1).
If r3 = 6 and r1 ≥ 3 then n ≤ 12(g − 1).
If r3 = 5 and r1 = 2 then r2 ≥ 4 and n ≤ 40(g − 1).
If r3 = 5 and r1 ≥ 3 then n ≤ 15(g − 1).
If r3 = 4 then r1 ≥ 3 and n ≤ 24(g − 1).

�

To compactify the coarse moduli space Mg Deligne and Mumford introduces stable curves.
We have seen that TIdXAut(X) = H0(X,TX), an element of this space is called an infinitesimal
automorphism.

Definition 7.6. A reduced, connected, projective curve X, having at most nodes as singularities
is said to be stable if H0(X,TX) = 0, i.e. X has no infinitesimal automorphisms.

Clearly for a curve X of genus g ≥ 2 the following are equivalent,
• X has no infinitesimal automorphisms,
• H0(X,TX) = 0,
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• Aut(X) is finite.
By the preceding discussion any smooth curve of genus g ≥ 2 is stable.

Consider the local infinitesimal deformation functor of F for a stable curve X of genus g ≥ 2,

DefX : Art→ Sets,

which associates to any Artin local algebra A the set of isomorphism classes Υ → Spec(A) of
families of curves of genus g over Spec(A), with a fixed isomorphism Υ0 → X, where Υ0 → Spec(k)
is the central fiber of Υ. Note that the isomorphism Υ0 → X is not unique, indeed we can recover
any other isomorphism composing with an automorphism of X, and the set of such isomorphisms
is a principal homogeneous space under the action of Aut(X) .We denote by Mg the Deligne-
Mumford compactification of Mg. Then we can think the points of Mg as isomorphism classes of
curves of genus g, and the points of the boundary Mg \Mg as isomorphism classes of nodal stable
curves of arithmetic genus g. Our aim is to prove that Mg using deformation theory. The following
remark will be important in the proof of Smoothness of Mg.

Remark 7.7. Let X be a proper scheme and let DefX be its deformation functor. Then T iDefX =

Exti(L•X ,OX), where L•X is the cotangent complex of X. If X has only local complete intersection
singularities the L•X coincides with ΩX in degree zero. Recall that from the spectral sequence of
Ext groups we have

Hq(X, Extp(ΩX ,OX))⇒ Extp+q(ΩX ,OX).

Consider the special case where X = C is a nodal curve and p+ q = 2. Then
• H0(C, Ext2(ΩC ,OC)) = 0 because ΩC admits a locally free resolution of length one. Indeed

take an embedding C → Y of Y in a smooth surface, then we have an exact sequence

0 7→ I/I2 → ΩY ⊗OC → ΩC 7→ 0.

• H1(C, Ext1(ΩC ,OC)) = 0 because Ext1(ΩC ,OC) is supported on Sing(C) which is zero
dimensional.
• H2(C,Hom(ΩC ,OC)) = 0 because dim(C) = 1.

We conclude that Ext2(ΩC ,OC) = T 2DefC = 0.

Theorem 7.8. (Smoothness of Mg) Let X be a stable curve of arithmetic genus g ≥ 2. Then the
functor of local infinitesimal deformations DefX of X is pro-representable by a regular local ring
of dimension 3g − 3. In other words Mg is a smooth Deligne-Mumford stack of dimension

dim(Mg) = 3g − 3.

Proof. The functor DefX is pro-representable since X is projective and does not have infinitesimal
automorphism. Furthermore T 2DefX = H2(X,TX) = 0 since dim(X) = 1, then there are no
obstructions to deforming X and the local ring representing DefX is regular. Furthermore from
remark 7.7 we get Ext2(ΩX ,OX) = T 2DefX = 0 for a nodal curve. Then in any case the
deformation functor of X is unobstructed. So far we have proved that Mg is representable by a
smooth Deligne-Mumford stack. To compute its dimension we distinguish two cases.

(1) If X is a smooth curve, and 0 7→ I → A → B 7→ 0 is a semi-small exact sequence in Art,
then there is a functorial exact sequence

H1(X,TX)⊗ I → DefX(A)→ DefX(B)→ H2(X,TX)⊗ I.
On a curve TX = ωX̌ , where ωX is the canonical sheaf of X. Then deg(TX) = 2− 2g, and
since h0(TX) == 0, by Riemann-Roch theorem we get h0(TX)−h1(TX) = 2−2g−g+ 1 =
3 − 3g, and h1(TX) = 3g − 3. We conclude that in a point x ∈ Mg corresponding to the
isomorphism class of a smooth curve X, the tangent space TxMg has dimension 3g − 3.

(2) Now consider the case where X is a stable nodal curve. We have a sequence
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0 7→ H1(X,Hom(ΩX ,OX))→ Ext1(ΩX ,OX)→ H0(X, Ext1(ΩX ,OX)) 7→ 0,

there being no H2 on a curve. We denote by δ the number of nodes in X. Since the sheaf
ΩX is locally free on the smooth locus of X, the sheaf Ext1(ΩX ,OX)) is just k at each
node, then dim(H0(X, Ext1(ΩX ,OX))) = δ. The curve X is l.c.i, then the dualizing sheaf
ωX is an invertible sheaf, and since ωX ∼= ΩX on the open set of regular points, we have
an injective morphism ωˇ

X → Hom(ΩX ,OX), and an exact sequence

0 7→ ωˇ
X → Hom(ΩX ,OX)→ OZ 7→ 0,

where Z = Sing(X). Since X is stable h0(Hom(ΩX ,OX)) = 0, by the cohomology exact
sequence we get h0(ωˇ

X) = 0, and

0 7→ H0(X,OZ)→ H1(X,ωˇ
X)→ H1(Hom(ΩX ,OX)) 7→ 0.

By Riemann-Roch for singular curves we get h1(ωˇ
X) = 3g − 3, and since h0(OZ) = δ we

get h1(Hom(ΩX ,OX)) = 3g − 3− δ. Finally
dim(Ext1(ΩX ,OX)) = h1(TX) + h0(Ext1(ΩX ,OX)) = 3g − 3− δ + δ = 3g − 3.

We conclude that any point of Mg is smooth and Mg is a smooth stack of dimension 3g − 3. �

7.2. Stacks. The study of moduli problems for elliptic curves and curves of genus g ≥ 2 introduces
a new kind of objects: the so called moduli stacks. We have seen that a moduli problem gives rise to
a functor, if the functor is representable we have a fine moduli space, that is a scheme. Sometimes,
if it is not representable one can find a coarse moduli space, which tells us the isomorphism classes
of our objects over a field, but does not describe all the possible families of objects. It happens
that the functor related to a moduli problem is not representable by a scheme. We search for a
sort of generalized scheme.
A scheme is constructed out of affine schemes by gluing the isomorphism defined on Zariski open
subset. In the same spirit consider a collection of schemes {Xi}, and for each i, j étale morphisms
Yi,j → Xi, Yj,i → Xj and isomorphisms φi,j : Yi,j → Yj,i, satisfying a cocycle condition for each
i, j, k. We glue together the Xi along the φi,j . This quotient may not exist in the category of
schemes, but it is an algebraic space.
Instead of the functor F , which sends any scheme S in the set of isomorphism classes of families
X → S, consider a new object F , which to each scheme S assigns the category F(S) of families
and isomorphisms between such families. This object is called a fibered category over the category
of schemes. The sheaf axioms for the functor F are replaced by the stack axioms for the fibered
category F , which are the following. For any scheme S and any étale covering {Ui → S}, consider

F(S)→
∏
F(Ui) ⇒

∏
F(Ui ×S Uj) ⇒

∏
F(Ui ×S Uj ×S Uk).

• The fact that the first arrow is injective means that if a, b ∈ F(S) and if ai, bi are their
restriction on F(Ui), and there is an isomorphism φi : ai → bi such that for each i, j the
isomorphisms φi, φj restrict to the same isomorphism of ai,j and bi,j on Ui ×S Uj , then
there is a unique isomorphism φ inducing φi on each Ui.
• The fact that the sequence is exact at the first middle term means that if we give objects
ai ∈ F(Ui) for each i and isomorphisms φi,j : ai → aj on Ui ×S Uj satisfying a cocycle
condition on each Ui ×S Uj ×S Uk, then there exists a unique object a ∈ F(S) restricting
to each ai on Ui.

A Deligne-Mumford stack is a fibered category F satisfying the stack axioms, and such that there
exists a scheme X and a surjective étale morphism Hom(−, X)→ F . An Artin stack is the same
but require that only that Hom(−, X)→ F be smooth.
The moduli space of curves Mg is a Deligne-Mumford stack for any g ≥ 2. In the paper The
irreducibility of the space of curves of given genus, Deligne and Mumford introduced stacks for the
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first time, they compactified the stack Mg adding stable curves, and they prove its irreducibility
in any characteristic.
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